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ABSTRACT

The posterior distribution of the break point in autoregressive processes which undergo structural change is
derived. The noninformative prior density is used. Simulation study is done for the changing AR(l) and the
AR(2) processes.
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When modeling time-series data using the Box-Jenkins approach, parameters are assumed
not to vary with time. While this may be sufficient in most practical applications, there are
instances that model parameters also change after some specific time points. For example,
evidences have shown that economic time series models before and after the 1983 Ninoy
Aquino assassination exhibited marked differences.

In this paper, the autoregressive process will be examined for possible shifts in
parameters. The Bayesian approach will be employed in identifying the time point when the
parameters of an autoregressive process are said to undergo some changes. The
noninformative prior distribution will be used. Broemeling and Tsurumi (1987) gives an
extensive discussion of structural changes in linear and time series models. Salazar (1982)
analyzed structural change in some time series models. Their works, which use the Bayesian
approach, employ the Normal-Gamma prior distribution. The noninformative prior will be
used here and the derived results will be tested by simulation.

1. THE MODEL

Let (1,2, ..., v, v+1, ... n) be discrete time points. The autoregressive model to be
• considered is

= {a/~_/ + a2~_2 + ... + ar~_r + 8,

P/~-/ + P2~-2 + '" + Pr~-r + 8,

t=1,2,"', v

t=v+l,"',n
(1.1)

where 1::::; v::::; n and unknown; r < v
a i *' Pi for at least one i
Yo' Y- 1, ... , Y1-r are known constants
8, ; t = 1,2, ... ,n are independently distributed normal random variables

with means 0 and variance 0'2.

When v = n, this is the usual autoregressive process model with no parameter shift but if
1 ::::; v ::::; n-1, then structural change is said to occur and v is called the break point. The
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analysis will consist of deriving the posterior distribution of v. We choose as our estimate of
the break point, the value ofv which attains the maximum posterior probability.

2. rO§1I'JEmOR ANAJLY§][§

In this section, the posterior density, n(v\X) of the break point v given the sample data X,
will be derived using Bayes' Formula

•

n(vIX) = h(v)f(Xlv)
m(X)

where m(X) = f··Jf(Xlv)h(v)dv.

Since m(X) does not involve v , the above expression will be rewritten as

n(vIX) o: h(v)f(Xlv)

where the symbol " ex:. " means" is proportional to".

•

~ Yv+1

Let Y Y (v) = ~ y = l'(v)= Y,,+l
=I I Z Z

Yv J:

Yo y.
1 Y,-r y" YV - 1

Z = Z(v)= ~ Yo 0-1' Z = Z(v)= Y,,+I y"
I I Z 2

Yv-I y"-l y,,-I' Y,,-I J:-l

y= y(V) = [i,] Z~Z(V) ~ [~' :,J

Y,,-r

y"+I-r

J:-r

•

a l PI

0.=
a 1 ~ = Pl $=[;] •..
a r PI'

Model (1.1) can be rewritten as

s = YI - a l Yo - ... - arYI-rI
e = Yz - alY1 - ••• - arYZ-rZ

ev = Yv - a\Yv_1 - •.• - arYv-r
ev+1 = Yv+1 - PIYv - •.. - PrYv+l-r
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The conditional likelihood of (<D,o,V), given the sample observations (Z,Y) is

n {o( vL(<D,o,vi (2:Y) ex 02exp -- Io~ -a/~_1 - ... -ar~_r/
2 1=1

or in matrix form

29

•
L(<D,o,vl(Z. Y) ex

8~ exp(- ~ [(Y( v) - Z( v)<I:»'(Y( v) - Z( V)<I:»]} 1s v s n-l

8~ exp(- ~ [(Yt (n) - ZI (n)<I:»/(YI (n) - ZI (n)<I:»]} v = n

(2.1)

•

To derive the posterior density of v, a prior density for the parameters (<I>,o,v) must be
specified. There are a number of ways by which the prior density can be determined and
Berger (1985), gives a number of methods. The use of prior density is one of the most
controversial aspects of Bayesian analysis. One of the criticisms is the issue of whether
different priors give different results. Bayesians argue that this seldom occurs and in cases
that this happens, then an important prior information that affects the data really exists and
hence the need for a more detailed Bayesian analysis.

Jeffreys' noninformative prior will be used here because it is the least controversial choice
and it has been shown that many classical estimation results correspond to the Bayesian
results when the noninformative prior is used. It also has an important feature that it is not
affected by a restriction on the parameter space. Use of this prior is also, in a sense, robust
because no subjective prior beliefs are assumed.

The posterior density of v will now be derived for I ::; v ::; n-l. The steps involved when

v = n is similar, and will not be shown. Let the joint prior of (<D,o,v) be given by Jeffreys'
noninformative prior

1

•
1

p(<D,o,v) ex -2

c
and let () =

cr 2
(2.2)

•

Combining (2.1) and (2.2) by Bayes Theorem, we get

n-2 {o
1t(<1>,o,vl(Z,Y» ex °2 exp -2"(a - a ·)'(Z;Z.)(a - a·)

+(P-if)'(z/Z2)(P-lf) + g(v»)}
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where •

Integrating out a and ~ ,

Integrating out 8,

•

This gives us the posterior distribution ofv below, from which most of the inferences will be
based.

oc {Irz(vj'z(v)]r~rg(v){(n_/r) ; l~v~n-l
J _('!::.!...)

IrZ(nj'Z(n)]prg(n)] 2 ; v=n

(2.3)

•where g(v) = Y(v)'Y(v) - [Y(V)'Z (v)] [Z(v)'Z(V)]-1 [Z(v)'Y(v)]

3. SRlvHJlLATllON STlU][))1{

To illustrate the effectiveness of the method derived in the previous section, sets of
normally distributed random variables were generated using SAS. These values were used as
the error terms in creating 20 data files for each of the parameter combinations used in Tables
3.1 and 3.2. A computer program to compute the posterior probabilities of the break point
was developed by the author using Turbo Pascal 6.0. All computations were done using
extended precision.

Summaries of the results are given in Tables 3.1 and 3.2 for the AR(I) and AR(2)
respectively. The label' HPP at v I means that the highest posterior probability is attained at
the simulated break point v. The column heading I HPP near v I refers to the number of times
that the break point v simulated by the appropriate model is contained in the interval HPP t

plus or minus 5% of the sample size n, where HPP t is the time point where the Highest
Posterior Probability occurs. As an example, the third row of Table 3.1 indicates a sample
size of 50, a break point of 30 and 'HPP near v' of 15. This means that 15 out of 20 data files
have the simulated break point 1{=30) contained in the interval (HPPt - 1, HPPt + 1 ) . Here
5% of n(=20) is 1. For sample sizes 15, 25, 30, 50, and 75, the value 5% of the sample size
was rounded off to 1,2,2,3, and 4 respectively. The column heading 'HPP near v' is similar
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• to finding an HPD(Highest Posterior Density) Credible Set which is the Bayesian analogue of
the Confidence Set used in Classical Statistics.

Table 3.1
Summary of Simulation Results for the Model

y,={ a/y,_/+f: t

p/y,-/+f: t

t = 1,2, , v

t=v+l, ,n

•

Parameter Sample Break HPPat HPP near Percentage
Values Size Point v v HPP near v

al=O.4 50 30 0 I 5%
PI = 0.6
al = 0.3 50 30 2 10 50%
PI = 0.9
al=O.4 50 30 5 15 75%
PI = 1.0
al = 1.0 50 30 30 30 100%
PI = 1.1
al = -0.5 50 30 8 14 70%
PI = +0.5
al = -0.5 75 40 8 14 70%
PI = +0.5
al = -0.5 100 50 5 14 70%
PI = +0.5

For the AR(1) model, the change cannot be detected for small changes in the parameter.
This is seen in Table 3.1 above, where only a 5% success is recorded when the parameter
changes from 0.4 to 0.6. However, the capture of the break point improves dramatically as
the numerical change in the parameter increases. This improvement can be noted in Table 3.1
where the success rate is 50% for at =0.3 and PI = 0.9 ,and 70% for a\ = -0.5 and PI = +0.5
for sample sizes 50, 75 and 100. When the process changes from being stationarym. = 0.4) to
nonstationarytji. = 1.0) , 75% of HPP is near the simulated break point. Finally the break
point is captured 100% of the time for even a small changeta = 0.1) of the parameter when
the process starts as being nonstationary.

The AR(2) process enjoys a much better success rate than the AR(l) model. One reason
that can be forwarded is that more parameters are subjected to change for AR(2) than for
AR(l). The summary is given in Table 3.2 below. For parameter combinations a l = 0.4, PI =
0.7, a 2 = 0.7, P2 = 0.6 the percentage of HPP near the simulated break point ranges from
85% to 95% for sample sizes 50, 75 and 100 and when the break point is near the center. The
higher percentage is attained at a sample size of 100. This means that an improvement is
made when the sample size is increased. When the variance is allowed to change, the success
rate remains the same although the actual probabilities for the simulated break point
improves. The break point is captured 95% of the time when it occurs near the beginning (v
= 5) of the series. When the break point is near the end(v = 45), 95% of the highest posterior
probability hovers near 50, indicating no change occurred. In most cases where the graph(not
shown) clearly indicates a break point, the highest posterior probability also occurs at that
particular break point.
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v = break point number of datasets = 20 HPP = Highest Posterior Probability
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'fable 3.2
Summary of Simulation Results for the Model

y={U/l';_/+U2l';_2+E/; t= 1,2, ,v

/ p/l';-/+P2l';-2+E/; t = v+l, , n

Parameters Sample Break HPP at HPP near Percentage
Size Point v v HPP near v

0.1 = 0.4 PI = 0.3 50 30 7 17 85%
0.7 = 0.7 P7 = 0.6
0.1 = 0.4 PI = 0.3 75 40 4 17 85%
0.2 = 0.7 P2 = 0.6
0.1 = 0.4 PI = 0.3 100 50 4 17 85%
0.2 = 0.7 P2 = 0.6
0.1 = 0.4 PI = 0.3 50 5 19 19 95%
0.2 = 0.7 P2 = 0.6
0.1 = 0.4 PI = 0.3 50 45 0 19 95%
a? = 0.7 P? = 0.6
0.1 = 0.4 PI = 0.3 50 30 8 17 85%
PI = 0.7 P2 = 0.6 0"1:;t 0"2
0.1 = -0.6 PI = 0.5 50 30 30 30 100%
a? = -0.4 P? = 0.7

•
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v = break point number of datasets = 20 HPP = Highest Posterior Probability
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